버터후라이 밸브도 볼 밸브, 프러그밸브와 마찬가지로 90도 회전밸브 이다. 특히 밸브구경 대비 밸브 노즐면간의 길이가 매우 짧은 콤팩트화된 밸브로써 밸브 구조상의 여러 가지 독특한 장점이 있다. 그 예로써 밸브의 구경 대비 밸브 무게가 거의 같은 역할을 수행하는 게이트밸브에 비하여 60~70% 정도이고, 볼 밸브나 프러그 밸브에 비해서도 20%이상 가볍다. 또 밸브의 무게중심의 볼 밸브와 같이 배관 중심선과 거의 일치함으로 배관계의 구조를 보다 건전하게 한다. 물론 밸브의 구성부품수도 적기 때문에 제작도 용이하고, 밸브 구경 대비 가격도 저렴한 편이다. 특히 웨이퍼(wafer)타입의 버터후라이밸브는 밸브의 크기 및 콤팩트성, 가격, 제작의 용이성, 설치의 편이서, 배관계의 구조적 안정성, 밸브의 유지보수 측면에서 어쩌면 가장 합리적인 밸브타입으로 볼 수 있다. 위와 같은 여러 설계인자로 인하여 버터후라이 밸브는 밸브구경이 커지면 커질수록 장점이 돋보인다. 계통의 운전조건에 따라 다르겠지만 밸브의 호칭직경이 20인치(500mm)를 넘는 대형의 밸브는 거의 모두 버터후라이밸브이다. 헌재까지 기록상으로 호칭직경 10,000mm(10m)의 버터후라이밸브가 생산되었고, 차후바닷물의 조수(潮水)발전이나 해양 온도차에 의한 해양발전등 대규모 에너지 개발 프로젝트가 실용화되려면 이보다 훨씬 큰 버터후라이밸브가 제작되어야만 할 것이다. 단점으로는 디스크와 시트와의 기밀유지 기술이 타 밸브에 비하여 까다로우며, 디스크의 구조상 유체흐름과 대칭상태로 힘을 받기 때문에 높은 차압을 요구하는 계통에는 진동 및 소음등을 유발하므로 적용하는데 어렵고,아울러 밸브 크기가 클수록 디스크에서의 면압 및 운전토오크가 커지기 때문에 압력이 높은 계통에서의 버터후라이밸브 선정은 제약을 받는다.
(1). 버터후라이 밸브의 시팅구조
버터후라이 밸브의 시팅구조는 볼 밸브와 마찬가지로 탄력성이 좋은 천연 또는 합성고무, 불소수지등으로 만든 시트에 금속 제의 디스크면이 접촉하여 기밀을 유지하는 구조가 범용의 저압 프로세스용 버처후라이밸브에 널리 채용되고 있으며, 증기 서비스와 같이 비교적 고온 유체의 제어 및 계통 압력이 20bar를 넘거나 밸브간 차압이 5bar 이상을 제어하여야 하는 경우에는 메탈시트(metal to metal contact)또는 고성능 버터후라이밸브를 채용하는 것이 권장된다. hpbv는 버터후라이밸브 제작사중 기술력이 좋은 일부 밸브로써, 각사마다 독특한 구조의 시팅구조를 선보이고 있다. 그러나 hpbv의 기본적인 시팅구조의 형식은 디스크와 디스크 축이 편심상태로 설계된 에쎈트릭 디스크구조가 대부분이다. 다음의 그림 51은 일반 법용 버터후라이밸브의 시팅구조를, 고성능 버터후라이밸브의 시팅구조와 운전특성을 보여준다.
(2)버터후라이 밸브의 형식
버터후라이 밸브의 형식은 밸브 몸체의 연결방식과 디스크-시트의 시팅구조의 차이점에 따라 수분할 수 있다. 우선적으로 밸브 몸체의 구성방식으로 보면 프랜지형, 웨이퍼형, 프랜지 관통형으로 구분되면, 시팅구조로 보면 디스크와 디스크 구동축이 밸브 몹체의 중심과 일치하는 콘쎈트릭(concentric)구조와 구동축이 편심되어 있는 에쎈트릭(eccentric)구조로 구분할 수 있다. 이렇게 기하학적으로 시팅구조가 상이한 것은 시팅의 역학적구조가 밸브의 기본기능인 압력기준 및 완벽한 유로차단기능에 있어서 전자의 경우는 낮은 압력 또는 "rubber lined", 후자의 경우는 높은 압력 또는 "high performance"를 갖는다는 뜻을 포함하고 있다.
(3)버터후라이 밸브의 운전특성
버터후라이 밸브의 운전특성은 디스크 형상의 특성상 독특한 운전특성을 갖고 있다. 운전특성은 첫쩨, 밸브 개도의 정도에 따라 밸브의 운전토오크가 크게 변화되고, 둘째, 밸브 시팅에 비교적 큰 토오크가 필료하며, 셋째, 유량조절시 저개도 운전시 유체 와류현상에 의한 밸브 운전의 불안정성을 들 수 있다. 이러한 버터플라이밸브의 운전 특성으로 말미암아 밸브의 구조적 측면에서 많은 장점에도 불구하고 버터후라이 밸브의 적용은 제한 받을 수 밖에 없다. 밸브의 운전 토오크는 밸브에서의 부하차압(밸브는 계통에 있어서 제어요소 이기 때문에 밸브 전단의 계토압력과 후단에서의 계통압력은 제어요소인 밸브에서 감당하는 경우가 대부분이다. 이때 밸브가 수용해야 하는 계통간의 차압을 부하차압이라고 한다.)의 정도에 따라서 크게 차이가 난다. 한 예로써 범용 고무라이닝된 4" ANSI CLASS300의 버터후라이 밸브는 일반 청수를 서비스할때:100% 완전개도시 경험상 10PSI(0.7BAR)의 차압을 유지하는 것이 권장된다. 이런 경우 유속을 9m/sec.로 하면 최대 유량은 1186 GPM(269ton/hour)이 된다. 이때의 필요 토오크는 시팅되어 있는 디스크를 떼어냄는 힘(breakaway torquid)를 포함하여 2.4~~2.5kg~m가 필요하다. 그러나 개도가 70%정도가 될 때는 차압이 증가되는데 이는 밸브 디스크와 시트의 교축이 원인이 된다.이때 차압이 22psi(1.5bar)정도 생기며 유량은 1313gpm(298ton/hour)정도로 증가된다. 이때의 운전토오크(dynamic operating torque)는 100%개도시의 운전토오크에 비하여 적어도 10배이상의 코오크가 소요된다. 그림56은 버터플라이밸브에 있어서 시팅토오크가 없는 이성적인 조건하에서 밸브 개도에 따른 운전 토오크의 변화를 보여준다. 시팅토오크를 무시할 수 있는 밸브는 실제적으로 버터후라이 밸브에서는 없다. 단지 이 그림은 운전중 밸브스템의 토오크변화 특성을 설명하기 위한 것이다.실제로는 닫힌 밸브를 열기 시작할때는 닫았을 때의 시팅 토오크이상의 토오크가 필요하다. 이 토오크를 브레이크어웨이토오크라 한다. 통상적인 모든 버터플라이밸브는 브레이크어웨이 토오크가 실질적인 밸브 조작토오크가 된다. 따라서 버터플라이밸브의 운전 토오크는 계통운전조건의 압력-온도에 의한 토오크 보다 시팅력에 필요한 토오크에 200%이상의 토오크를 더 계산한 브레이크-어웨이 토오크를 가지고 사이징하여야 한다. 시팅코오크를 구하는 방법은 메탈시트의 경우 다음과 같은 안을 제시한다.
입력항목: p=시트접촉면압 b=사투접촉의 폭 R=시트의 반경 α=시트의 각도함수=(π/2)-시팅각도 Θ=디스크의 시팅 유효각도 μ=시트와 디스크면의 마찰 계수 계산 시팅토오크 TS=2×P×b×r2×(±(1/tanα)×sinΘ×cosΘ+Θ)+2μ×sinΘ) 따라서 총 필요토오크는 경험상 Tt=Ts+(스템부 마찰에 의한 토오크)+(정수력학적 토오크)가된다. 다음의 그림 59는 범용 버터플라이밸브의 밸브 개도별 차압 및 유량의 관계를 설명하기 위한 그림이다. 그림 60은 범용 버터후라에밸브의 크기별 차압별로 버터후라이 밸브의 총 조작토오크의 경향을 보여준다 수치는 대부분의 테프론라인드 버터플라이밸브에 적용될 수 있는 수치들이다. 만약 미터단위로 환산하려면 다음과 같이 한다.
1 psig=6.894PKa=0.0684bar 1GPM(water)=63 10E6(m3/sec)=0.00378(m3/Min)=0.2268(m3/hour) 1 1b-in=0.11298 N-m=0.01152kgf-m 1렌=0.3048m/sec. 표 18은 버터플라이밸브에 있어서 밸브개도와 차압에 따른 이론적인 유량과 이에 다른 유속을 계산해 본 결과이다. 다러서 실제적으로 일어날 수 있는 케비네이션과 같은 현상은 무시되었다.그러나 이 표는 다음과 같은 버터플라이밸브만이 가질수 있는 특송을 보여주고 있다.
즉, (1). 밸브개도 80 90%일 때 밸브간에 생기는 차압은 일정하지만 유량은 다르다.
(2)밸브개도가 60%이상이 되면서부터 차압의 증가율이 낮아진다.
(3)밸브개도가 70% 80%일때의 차압의 변화율과 유량의 변화율은 상호 비례관계를 갖지 않는다. 이와같은 버터플라이밸브에서는 밸브개도 60 90%사이에서는 유량과 차압의 변화특징이 많음으로 실제 범용의 버터 후라이 밸브에 있어서 개도조절에 의한 유량제어에의 적용에는 무리가 따름을 알 수 있다.
'계장 기술 > 계장 이론' 카테고리의 다른 글
밸브의 종류 / 다이아후램밸브 (0) | 2020.05.10 |
---|---|
밸브의 종류 / 체크밸브 (0) | 2020.05.09 |
밸브의 종류 / 볼밸브 (0) | 2020.05.07 |
솔레노이드 벨브 (0) | 2020.05.06 |
측정방법 및 온도계 종류 (0) | 2020.05.04 |